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Symmetries, first integrals, and the inverse problem of 
Lagrangian mechanics: I1 

Willy Sarlet and Frans Cantrijnt 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 2 8 1 4 9 ,  B-9000 
Gent, Belgium 

Received 6 October 1982 

Abstract. This paper investigates under what conditions the knowledge of a symmetry 
and a first integral of a linear system of second-order differential equations provides 
information about the existence of a Lagrangian. The relationship between symmetries 
apd first integrals through Noether’s theorem thereby plays an essential role. The treatment 
being confined to linear systems and linear symmetries, it is shown that there is no loss 
of generality in  taking only quadratic Lagrangians into consideration. 

1. Introduction 

In a number of recent contributions we have investigated various aspects of the search 
for symmetries and first integrals on the one hand (Sarlet and Cantrijn 1981a, b, 
Cantrijn and Sarlet 198 1) and the so-called inverse problem of Lagragian mechanics 
on the other hand (Sarlet et a1 1982, Sarlet 1982). As a natural outcome of these 
studies we have further been led to look at various possible connections between both 
problems (Sarlet 1981, 1983a). The present paper is a continuation of a previous 
one with the same title (Sarlet 1981), in the following referred to as I. Needless to 
say, we have not been the only contributors to these areas. We limit ourselves here 
to citing a few closely related papers and hope that the reader will further sift his way 
through the literature with the help of the references in these papers. Concerning 
related studies on symmetries and first integrals we can mention for example: Crampin 
(1977), Djukic (1974), Gonzales-Gascon and Rodriguez-Camino (1980a, b, c), Leach 
(1981), Prince (1981), Steeb et a1 (1981). For the inverse problem of Lagrangian 
mechanics see e.g. Crampin (1981), de Ritis et a1 (1980), Henneaux (1982a, b), Marmo 
and Saletan (1977). Finally, concerning the problem of linking both issues, see also 
Schafir (1981, 1982), Takens (1977). 

Our own view of the ‘linking question’, as initiated in I, has been largely dominated 
by Noether’s theorem which in a proper setting, rather than establishing a direct, 
rectilinear relation between symmetry generators Y and first integrals F, reveals a 
triangular structure between Y, F and the Lagrangian L.  Indeed, the concept of a 
Noether symmetry only makes sense with respect to a given Lagrangian L for the 
problem, in the sense that it is an invariance transformation of the two-form de@),  
B(L) being the Cartan form corresponding to L.  The symmetry-first-integral duality 
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is then completely determined by the formula 

iy d6(L) = dF, (1) 

where i y  denotes contraction of forms with the vector field Y.  Now, changing the 
Lagrangian (if possible) alters the Noether symmetries corresponding to given first 
integrals. As a result, one can raise the new question whether knowledge of a symmetry 
Y of the equations of motion and a suitably related first integral F may be a 
deterministic element in finding a Lagrangian governing the given differential 
equations. This question was completely solved for the case of one degree of freedom 
in I. For reasons of brevity we refer to 00 1 and 2 of I for more details about the 
above considerations and for an extensive description of the notations and terminology 
which will also be adopted here. We merely repeat here that for second-order 
equations 

4' = h'(t, q, c j ) ,  (2) 

which are governed by the vector field 

r = a / a t + q ' a / a q ' + ~ ' a / a c j ' ,  (3)  

we write symmetry generators Y in the form 

Y = a/aql + V I  alacj'. (4) 

V i  = r(@I), w )  = Y ( A ' ) .  ( 5 )  

The symmetry condition [ Y, r] = 0 then requires that 

For multiple degree-of-freedom systems, it is certainly out of the question to count 
on results which are as strong as in I, where every pair (Y ,  F )  satisfying the necessary 
condition Y ( F )  = O  was shown to be Noether interrelated with respect to some 
Lagrangian. Therefore, one may in the first place wonder whether for a given fixed 
symmetry Y one can identify conditions on a related first integral F which would 
make the pair (Y ,  F )  Noether interrelated with respect to some L. The first proposi- 
tions in 8 3 provide a result of that nature. 

Immediately, however, we know that such conditions on F, assuming they would 
always be identifiable, will often have no solutions. The two-dimensional Kepler 
problem provides a simple example in that respect. Indeed, the non-Noether symmetry 
discussed by Prince and Eliezer (1981) can never become a Noether symmetry with 
respect to some other Lagrangian, because the Lagrangian for that problem is essen- 
tially unique (see Henneaux 1982b, Sarlet 1982). For that reason we must somewhat 
widen the scene by varying Y. So, the next question to ask is: under what conditions 
for Y (or F )  does there exist a suitably related F (respectively Y )  leading to a 
corresponding Lagrangian L?  

In this paper we analyse these questions for the special case of linear systems. 
Most of the statements in the main sections have already been announced without 
proof in Sarlet (1983b). Section 2 contains a preliminary review of results from 
previous studies on linear systems, concerning both the search for symmetries and 
first integrals and the search for multipliers in the inverse problem of Lagrangian 
mechanics. 

Before proceeding, we wish to recall another previous result which provides a 
useful general criterion for dynamical symmetries to become Noether symmetries with 
respect to some Lagrangian L. It will repeatedly be used in proving later theorems, 
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Lemma 1. If the second-order system (1) is derivable from a Lagrangian L, then a 
dynamical symmetry Y (of the form (4)) will be of Noether type with respect to L if 
and only if 

(a2L/aCji a4j)cl.J = -aF/aqi (6 )  

for some first integral F(t ,  q, 4 ) .  

This lemma was also stated in I in a slightly different version. The proof of it can be 
found in Sarlet and Cantrijn (1981a). 

2. Preliminaries on linear systems 

We now restrict the functions Ai in ( 2 )  and (3) to be linear in q and q. Explicitly, 
we consider systems of the form 

i j + 2 A ( t ) 4  + B ( t ) q  =0,  (7) 

where A and B are arbitrary time-dependent n x n matrices (sufficiently smooth). 
Because of the linearity of (7) we further restrict our investigations to linear symmetry 
generators, that is, for a Y of the form (4) we assume that the components cl.' and v i  
are linear expressions in q and 4, say 

cl. = -(P(t)q + Q ( t ) 4 )  (8) 

for some matrices P and Q. The symmetry requirements ( 5 )  in that case mean that 
P and Q should satisfy the following set of coupled second-order matrix equations: 

(9) 

(10) 

Note that selecting a particular solution of (9) and (10) and defining accordingly a 
vector CL by (8) completely determines a symmetry Y, the remaining components v' 
being determined by the first of equations ( 5 ) .  

An interesting special case is the case of point symmetries (that is, the a/at 
component T and the 8/aqi components ti, in the notation of I, do not depend upon 
the velocities). For linear symmetries, being of point type essentially means either 
that Q is the unit matrix (to within a rescaling of the time variable), or that Q is zero. 
In the first case, the conditions (9) and (10) can be shown to reduce to 

Q = 4( QA + AQA - QA ') + 2( QA - A  Q) + QB - BQ + 2(PA - A P  - P ) ,  
P = 2(QB + AQB - Q A B )  + QB - 2AP + PB - BP. 

P - A  = [P, A ] ,  

@(I)  = [@(O), P - A ] ,  

whereas in the case Q = 0 we get 

p = [e AI, 

PI = 0. 

The matrices @(')(t) and @"'(t) are defined by 

@'"=B - A 2 - A ,  
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@''I = h,"'+[A, @("], (14) 

and the bracket denotes the usual commutator of matrices. 
Since we want to find out how dynamical symmetries of type (8) can become 

Noether symmetries with respect to some Lagrangian, let us now mention some basic 
results about the inverse problem of Lagrangian mechanics. For linear systems like 
(7) it is natural to think in the first place of quadratic Lagrangians. The problem then 
consists in finding a non-singular symmetric multiplier matrix V(t) which gives (7) 
the structure of Euler-Lagrange equations. Such a V must satisfy (see Sarlet et a1 
1982) 

One may conceive other than quadratic Lagrangians for (7), but it is worthwhile 
knowing that, if a non-quadratic Lagrangian for (7) exists, there certainly exists a 
quadratic one too (Sarlet 1 9 8 3 ~ ) .  We will come back to this in greater detail in § 4. 

If a linear symmetry is of Noether type with respect to some quadratic Lagrangian, 
the corresponding Noether invariant obviously will be quadratic too. So let us finally 
describe a set of equations which govern the search for quadratic first integrals of (7). 
We write a general quadratic F in the form 

F =  :(4Tvi(t)4 +qTDiit)4 +qTzi( t )q) ,  (17) 
where V1 and Zl are symmetric. Imposing the condition that F be a first integral 
(T (F)  = 0) would of course lead to a set of matrix differential equations for VI, D1 
and Z1. It will be useful, however, to make use of an equivalent set of equations in 
which the coefficients exhibit the same quantities @"' and @"I encountered above. 
The equations were derived in Sarlet and Bahar (1981) and read 

gAV1= w1, g A W l =  U19 (18a, b )  

9AR 1 = ( V1@'o')T - V1@"), i18d) 

~ , X = X - ( A ~ X + X A )  (19) 

and we have V1 = V:, W1= W:, U1 = U?, R I  = -RT. In terms of these matrices, D1 
and Z1 are then determined by 

(20) 

(21) 

9AUi =(RI -2W1)@'"- V1@>"'+transpose, ( 1 8 C )  

where the operator 9 A  is defined by 

D1= 2ATV1 - W1+ R 1, 

221 = VI@'o'+iU1 +ATVIA -(W1 -R1)A +transpose. 

3. Relating linear symmetries to quadratic Lagrangians 

We now return to an investigation of the two types of questions which were announced 
in the introduction. Basically we wish to look for situations in which linear dynamical 
symmetries Y of (7) turn out to be Noether symmetries with respect to some 
Lagrangian. For the time being, we thereby only take quadratic Lagrangians into 
consideration. It will be shown in $4 that this does not create a loss of generality. 
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For the first result we consider a fixed, given point symmetry Y and look for conditions 
on a suitably related F which will guarantee that the pair (Y, F) is Noether interrelated 
with respect to some qiladratic L.  

Proposition l a .  Let ,LL = -(Pq + q )  determine a dynamical symmetry Y for ( 7 )  and put 

(22)  

V and 2 being symmetric matrices (with V non-singular). Then ( 7 )  has a quadratic 
Lagrangian L (multiplier V )  and Y is a Noether symmetry with respect to L,  if and 
only if 

F = ;(qTvq +2qTPTVq + q T 2 q ) ,  

T(F) = 0 and Y(F) = 0. 

Proof. The 'only if '  part is trivial. Indeed, any quadratic L for ( 7 )  is of the form (see 
Sarlet et a1 1982) 

( 2 3 )  

with V satisfying (15)  and (16) .  So, if Y is of Noether type with respect to such an 
L,  the corresponding Noether invariant following from ( 1 )  is of the form (22)  and will 
also satisfy the condition Y(F) = 0. 

For the 'if' part, assume now that Y is a dynamical symmetry and F satisfies both 
additional requirements. Expressing Y(F) = 0 for a quadratic F will in general lead 
to three matrix conditions. For an F of type (22) ,  however, one can easily show that 
one of these conditions is identically satisfied in view of the other two and the latter 
can be written as 

L =+[qTVq + 2 q T A T V q  + i q T ( A T V A  - V@'O')q], 

V ( A  -PI + ( A ~ -  P') v = 0 ,  

Z = 2 P T V A  - PTVP + BTV - P T V  - (PT)*V.  

Equation (24)  implies that 

P - A  = -$V- 'R with RT = -R. (26)  

We further know from our assumptions that P satisfies ( l l a )  and (12a) .  Using ( l l a )  
to replace P in (25) ,  this in the first place allows us to rewrite 2 as 

z = A ~ v A + ) R A - ~ A ~ R + c D ( ~ ' ~ v .  (27)  
Secondly, ( l l a )  and ( 1 2 a ) ,  in view of (26) ,  imply that 

)V-'VV-'R -iv-'d =;[A, V - ' R ] ,  (28)  

@"I = i[V- 'R,  @"'I. (29)  
Next, we try to express the condition T ( F )  = 0. To that end, the present expression 
(22)  for our F, with Z given by (27) ,  should match the general expression (17)  for a 
quadratic first integral, supplemented by conditions (18) ,  (20) and (21). Looking at 
the general form (20)  for D1 and taking account of the present condition (26) ,  it is 
clear that V and R correspond to V I  and R I  respectively, while the matrix W1 in 
our case must be zero. 

Equation (186)  then further implies U1 = 0 so that, all together, T ( F )  = 0 requires 
that V and R satisfy the equations 

9AV = 0, (30)  
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0 = R QCoi - VQ"' +transpose, 

9AR = ( VQ'o')T - VQ'O', 

while 2, in view of (21 ) ,  must be of the form 

z = A ~ V A  ++RA - + A ~ R  ++va+oi+$z+o)Tv. (33)  

Now, replacing V in (28 )  from the relation (30 ) ,  one finds 9AR = 0, so that (32 )  further 
implies that VQ'O' is symmetric. This means that the conditions (15 )  and (16) for a 
multiplier are met. Moreover, one can further check that (29 )  becomes consistent 
with (31 )  and the two expressions (27 )  and (33 )  for Z are eventually identical. V 
now being a multiplier, it is finally straightforward to verify that the corresponding 
Lagrangian L (see (23 ) ) ,  the symmetry components p i  and the first integral F are 
related by a formula of type (6), which according to lemma 1 implies that Y ultimately 
is a Noether symmetry. 

A similar result can be stated for the class of point symmetries in which Q = 0 
(see ( l l b ) ,  (126) ) .  

Proposition 16. Let p = -Pq, with P non-singular, determine a dynamical symmetry 
Y for (7) and put 

F =qTPTVq  +$qTZq,  

V and 2 being symmetric (with V non-singular). Then ( 7 )  has a quadratic Lagrangian 
L (multiplier V )  and Y is a Noether symmetry with respect to L,  if and only if 

T(F) = 0 and Y ( F )  = 0. 

Let us now move on to the second type of question, mentioned in the introduction, 
where we no longer start with a fixed Y or F, but look for conditions on Y or F 
which will ensure the existence of a corresponding F or Y in the Noether picture. 

The following result should be regarded as providing sufficient conditions for the 
structure of suitable quadratic first integrals. 

Proposition 2. Let V ( t )  be a non-singular symmetric matrix and R ( t )  a skew-symmetric 
matrix satisfying 9AR = 0. Define a matrix P by P = A  - ) V I R  and a quadratic 
function F by 

F =$(qTVq+2qTPTVq+qTZq) ,  

with 2 defined by (33) .  Then V is a multiplier for ( 7 )  and p = -(Pq + q )  generates 
a dynamical symmetry if and only if T ( F )  = 0. The symmetry generated by p moreover 
is a Noether symmetry with respect to the Lagrangian corresponding to V. 

Remark. It is clear that the ingredients in this statement are somehow the same as 
those in the statement and proof of proposition l a .  Some of the intermediate 
implications encountered in the previous proof are now taken as assumptions, and as 
such essentially replace the previous assumption Y ( F )  = 0. We therefore leave the 
explicit proof of proposition 2 as an exercise for the reader. 
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Let us now turn to general linear symmetries (not necessarily of point type) and 
establish a result which this time characterises suitame symmetries Y for which a 
related F exists. 

Proposition 3. In order that (7) have a multiplier, it is sufficient that there exist a 
linear symmetry determined by (8), with Q and P of the form 

Q = V-'V1, (34) 

P = QA - ;V-'( W1 +RI),  (35) 

where VI, W1 and R1 satisfy equations (18), V is an as yet arbitrary non-singular 
symmetric matrix, and the following two regularity conditions hold true: 

det V1 # 0, det(Z1 -&l VT'DT) # 0, ( 3 6 ~ ~  6)  

D1 and Z1 being defined by (20) and (21). 

Proof. We set 

d( V-')/dt = - V-'AT-A V-' + W, (37) 

which defines a new matrix W. From the assumptions, we know that Q and P, as 
defined by (34), (35), satisfy the symmetry conditions (9) and (10). Substituting Q 
and P into (9) and making use of (18) and (37) produces the following relation: 

(38) 

The analogous computation for (10) is rather tedious, but straightforward. If one 
further makes use of (38), the end result simplifies to 

$[W + A  W + WAT+@"o'V-' - @'o)TV-l]( W1 +RI)  + W(U1+ V1@(o'+@'o'TV1) = 0. 

Now, from the assumption that VI is non-singular, one can solve (38) for the quantity 
in square brackets in (39), by which (39) further reduces to 

( W + A  W + WAT) VI = W(R - Wl) + ( V-l@'o'T - @'')V-') V1. 

(39) 

W[$( W1- R1)V;' (W1+ RI) - U1 - V1@''' -@'o)TV1] = 0. (40) 

One readily checks that the matrix multiplying W in (40) is -2Z1 +$Dl  VT'DT, so 
that (40) and (366) imply W = 0. Equations (37) and (38) then show that the symmetric 
matrix V satisfies the conditions (15) and (16), and therefore is a multiplier in the 
inverse problem. 

Remarks 
(i) Equations (18) always have solutions for V1, W1, U1, R1, and as such produce 

a quadratic first integral F for (7). So the restrictions embodied in the statement of 
proposition 3 come from expressing that a Q and a P of the form (34), (35), satisfy 
the symmetry requirements (9), (10). Note also that an application of lemma 1 again 
shows that the dynamical symmetry we started with will eventually be of Noether 
type with respect to the Lagrangian corresponding to the multiplier V. 

(ii) The regularity assumptions (36) have a nice interpretation. Indeed, the quad- 
ratic first integral F can be written in the form F = $xTAx, with x = col(q, 4 )  and 
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If VI is non-singular, one can show that 

det A = (det VI) det(Z1 -iD1 VT’DT), 

so that (36) means that F is a non-degenerate quadratic form in x space. 

4. What about non-quadratic Lagrangians? 

As mentioned before, it has been shown (Sarlet 1983c) that every linear system having 
a non-quadratic Lagrangian has a quadratic one too. Yet this property does not in 
principle exclude the possibility that a linear symmetry Y, which would be of non- 
Noether type with respect to all quadratic Lagrangians, might be a Noether symmetry 
with respect to a non-quadratic Lagrangian for ( 7 )  (assuming such a Lagrangian 
exists). So it would certainly add more weight to the results of 0 3 if we could show 
that the restriction to quadratic Lagrangians there does not really involve a loss of 
generality. We will do that now by proving the following theorem. 

Proposition 4. Assume that a p of the form (8) determines a dynamical symmetry Y 
of ( 7 ) .  If Y is a Noether symmetry with respect to some (possibly non-quadratic) 
Lagrangian L,  then there exists a related linear symmetry Y ’  of ( 7 )  and a related 
quadratic Lagrangian L’ such that Y ’  is a Noether symmetry with respect to L’. 

In order to prove this statement, it is easier to pass to the canonical form of ( 7 ) .  
We therefore introduce the matrix R(t), which is the solution of the following problem: 

R + A R = O ,  n(td = 1, (41) 

1 being the n x n unit matrix. The transformation q = Rq’ reduces ( 7 )  to 
- 

q ’  + p q l  = 0, (42) 

where the bar is used for the similarity transformation 

x = R-’XR. (43) 

It is known that point transformations preserve the Lagrangian character of 
second-order equations. Moreover, symmetries and first integrals for one equation 
will be carried over in a natural way to symmetries and first integrals for the transformed 
equation. The following lemma will therefore be intuitively clear. Nevertheless, it is 
of some interest to carry out a complete proof for the sake of having explicit formulae 
linking results for both systems. 

Lemma 2. Proposition 4 holds true for ( 7 )  if and only if it is true for the reduced 
system (42). 

Proof. ( i )  For any p ,  defined by (8), we introduce 

F ’ =  -(P’q’+Q’cj’), (44) 

with Q‘ = 0, P’ = - OA. It is then straightforward to check that P and Q satisfy (9) 
and ( lo) ,  if and only if P’ and Q’ satisfy the corresponding symmetry requirements 
for the reduced system (42). 
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(ii) If L is a Lagrangian for (7), corresponding to a multiplier matrix a (t ,  q, 4 ) ,  

(45) 

then a Lagrangian for (42) is determined by the multiplier 

S( t ,  q’, 4 ’ )  = RTan, 

where a of course is expressed in terms of the new variables. 
(iii) F( t ,  q,  4 )  is a first integral for (7) if and only if 

F’(t, q’,  4 ’ )  = F(t ,  nq’, -ARq’+ ad’) (46) 

is a first integral for (42). 
(iv) Assume we have 

aCL = -aFfaq ; 

then, upon multiplication by RT and expressing everything in terms of the new 
variables, we get 

sP = -aFi/aq’. 

Lemma 2 now follows from the observations (i)-(iv) and an application in both 
directions of the fundamental lemma 1. 

Now that we know in detail how to convert results for (7) to corresponding results 
for (42) and vice versa, we now concentrate on equations of type (42) and, for simplicity 
in notation, we omit all bars and dashes. Alternatively speaking, we consider equations 
of the form (7) in the special case that A = 0 and B is denoted by (D‘’). Recall that 
now we are no longer exclusively interested in quadratic Lagrangians, in other words, 
conditions (15)  and (16) no longer suffice. Concerning the theory for more general 
multipliers, see e.g. Sarlet (1982). We here confine ourselves to citing the relevant 
equations which will be satisfied by any multiplier of (42). 

Lemma 3. A non-singular symmetric matrix S(t, q, 4 )  is a multiplier in the inverse 
problem related to (421, iff S satisfies the following equations: 

as,,/aq = as,,/aq’, as,,/dq = a s k / a q l ,  Vi ,  j ,  k, (47a, b )  

(48) 

r(s) = 0, (49) 

S ( t ,  4, 4)@.‘0’( t )  = [ S U ,  4, 4i@,‘0’(t)lT, 

where r, as usual, denotes the vector field governing the system (42). 

Remarks 
( i )  Equation (476) is actually a direct consequence of (47a 1 and (491, as can easily 

be verified. With reference to the general treatment in Sarlet (1982), it is in fact 
one of the closure conditions which is always identically satisfied. 

( i i )  One can show that any multiplier for (42) must be of the form 
k 

S ( t ,  q , 4 ,  = c f i ( L  4,4)Si, 
i = 1  

where the k matrices SI are linearly independent constant multipliers (and as such 
yield quadratic Lagrangians) and the functions fi are constants of the motion. We are 
of course only interested here in those cases where multipliers SI exist. 
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Lemma 4. Let CL = - ( P ( t ) q  + Q(r)4) define a linear dynamical symmetry Y for (42). 
If Y is a Noether symmetry with respect to some Lagrangian L (with corresponding 
multiplier S ) ,  then we have the following properties: 

(i) 

(ii) 

S ( t ,  q ,  q)Q(t) is symmetric, 

S ( t ,  q ,  q ) ( P  - QO,'o')(t) is symmetric, 

(iii) Sd+SP+PTS = Y ( S ) .  

Proof. If Y is a Noether symmetry, then we have 

-S@ = aF/aq (53) 

for some first integral F. Computing r of both sides of (53) and taking account of 
T ( F )  = 0 and r(S) = 0, we get 

The property (47a) of S then immediately leads to (50). The other integrability 
conditions for (53) and (54) using (47a, b )  similarly lead to (51) and (52). 

Now, if we arbitrarily fix the values of t ,  q and 4 in S ,  we get a constant solution 
of the inverse problem equations mentioned in lemma 3. This is not immediately 
apparent concerning the algebraic condition (48). It can be shown however, that (48), 
under the assumption that all given matrices are real analytic, can be replaced by the 
infinite set of conditions 

( 5 6 )  

where the matrices @ ' k  ' ( t )  are recursively defined as in (14) and in the present situation 
are in fact simply the time derivatives of @"'(r). Looking at (56 )  instead of (48), it 
is indeed clear that 

S ( t ,  4 ,  4 ) @ ' k ' ( t o )  = [SU,  4 ,  4 ) @ ' k i ( t 0 ) l T ,  k = 0 , 1 , .  . . , C O ,  

s o  = S(t0, q0,40) (57) 

will be a constant multiplier of (42) and as such will give rise to a quadratic Lagrangian 
Lo.  From lemma 4 it trivially follows that SOQ(tO) and SO(P - Q@,'")(to) are symmetric 
and we have 

We next want to show that these properties remain true when So and Eo are kept 
fixed, whilst the matrices Q, P and are evaluated at any time t. 
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Lemma 5. If Y is a Noether symmetry with respect to L (multiplier S( t ,  q, q ) ) ,  we 
have for all t :  

(i) SoQ(t )  is symmetric, (59) 

(ii) So@ - Q@'")(t) is symmetric, (60) 

(iii) S,Q(t)+SoP(t)+PT(t)So =&. (61) 

Proof. As a preliminary step we notice that So, being itself a multiplier, satisfies the 
condition (48), that is 

S,@(O)(t ) = (S,@'o'(t )IT. (62) 
Moreover, letting the vector field Y act on (56), fixing subsequently the values of t, 
q and q and recombining all resulting relations to get the Taylor expansion of @(')(t), 
we also conclude that 

L J @ ( O ) ( t )  = (x.o@(o'(t))T, (63) 
for all t. Now, as noted above, we know the validity of (59)-(61) for t = to. Equation 
(61) at r = to further implies that Sodo(?) is symmetric. Next, from the symmetry 
requirement (9) (with A = 0 and B = 0")) and making use of (62), we can write 

sob = S ~ ( Q @ ( O ) - @ ( O ) Q  - 28)  
(0)T T = s0(o@(O) - 8 )  - @ ( o ) T ( ~ O ~  - Q~s,) - Q so - so$. 

Subtracting from this result its transpose, we get 

S o b  -(Sob)T= 2[S0(Q@.'0'-P)-(So(Q@(0'-8))T] 

- (So0 - Q T S O ) @ ( O )  - @(o)T(SOQ - QTSo). 

Similar calculations can be made in relation to (60) and (61) by repeatedly using (62), 
(63) and the symmetry conditions (9) and (10). The result is as follows. If we set 

K( t )  SoQ(t) - QT(t)So, 

L ( t )  = So(Q@'O'-P)( t )  - (Q@'o'-8)T(t)S0, 

M ( t )  = SOd(t, + SOP(?) +PT(t)S0 - CO, 

we find that the matrices K, L and M satisfy the differential equations 

d2K/dt2 = 2L - K 0") - @(0)TK, 

&/dl = @co)TMT-M@(o), M / d t  = L - @(o)TK. 

In addition we know that K (to) = dK(to)/dt = L(t0) = M(to)  = 0, from which it follows 
that K, L and M must be zero for all t, which completes the proof of lemma 5 .  

In general, if g = -(Pq +Q4) determines a dynamical symmetry for (42), then 
replacing P by P + C  (C constant) produces a new dynamical symmetry under the 
condition that 

(65) C@@' - @'O'C = 0. 

This is a trivial consequence of the symmetry conditions (9) and (10). With (65) in 
mind we now state: 
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Lemma 6. If p = -(Pq + Q4)  determines a Noether symmetry for (42) with respect 
to L (multiplier S(t ,  q, q ) ) ,  then 

p ' = -[(P + C )q + Q4 I 

c=-' -1 

with 

(66) 2 s o  Eo 

defines a dynamical symmetry for (42). 

Proof. The proof consists in verifying that (65) holds true, thereby making use of the 
properties (62) and (63). 

We are now finally in the position to prove the main theorem, concerning the 
reduced system (42). 

Proposition 5. Let p = -(Pq + Q 4 )  determine a dynamical symmetry Y of (42). If 
Y is a Noether symmetry with respect to some Lagrangian L (determined by a 
multiplier S( t ,q ,4)) ,  then there exists a related linear symmetry Y' of (42) and a 
related quadratic Lagrangian Lo,  such that Y' is a Noether symmetry with respect to 
Lo. 

Proof. Introducing So = S(to,  qo, d o ) ,  we obtain a quadratic Lagrangian LO.  Defining 
Xo as in (58) ,  we set 

p'=-[(P-:So1Co)q+Q4], (67) 
which according to lemma 6 yields a new dynamical symmetry of (42). Next, we 
introduce the quadratic function 

(68) 

where SdQ( t )  and So(QO"'-P)(r) are known to be symmetric by lemma 5 .  From 
(68) we obtain 

aG/dq = - s o p L ,  (69) 
aG/aq = (pTs0 - ix0)4 + So(QOio) - P)q. (70) 

G = L ' r  24 So@ +qT.(PTSo-i&)4 +iqTSo(QOio)-P)q, 

Computing r of both sides of (69) and taking account of (70), we obtain 

dr(G)/dq =(Sod +SoP+PTSo-&)(i = O ,  (71) 
by (61). Equation (71) of course means that the quadratic T(G) reduces to its 
@independent part, which explicitly reads 

3qT[ (d /d t ) (S0(Q~" ' -~ ) ) -  ( P T S o - ~ ~ o ) ~ ' o ' - ~ ~ o ' T ( S o P - ~ ~ o ) ] q .  (72) 

Using the differential equation (10) for P and the properties (62), (63) and (61), it is 
straightforward to verify that the matrix governing the quadratic expression (72) turns 
out to be identically zero. We therefore conclude T(G)=O. From (69) and the 
fundamental lemma 1 in the introduction it then follows that Y' is a Noether symmetry 
with respect to the quadratic Lagrangian Lo. 

Needless to say, proposition 4 follows from proposition 5 and lemma 2. 
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Some final comments are in order now. The statement in proposition 4 is something 
one intuitively would expect to be true. Nevertheless, proving it turned out to be 
quite non-trivial and actually is of some interest on its own, because it brings to the 
surface almost all relevant aspects of our previous studies on linear systems, concerning 
both the search for symmetries and quadratic first integrals, and the search for 
multipliers in the inverse problem. This last section provides a broader platform for 
the results of § 3,  yet it is quite independent of these results. It is worthwhile noting, 
however, that a complete understanding of the situation for linear systems may well 
be of interest for the case of arbitrary second-order systems too, because a general 
second-order system is derivable from a variational principle if and only if its linear 
variational equations have the same property. 

Concerning the results stated in § 3 now, they cannot be considered as providing 
strong evidence for a tight connection between the inverse problem of Lagrangian 
mechanics and the existence of symmetries and first integrals. The least one can say 
is that they offer an illustration of the fact that the perfect ‘Noether triangle’, which 
was shown to exist in paper I for the case of one degree of freedom, becomes a rather 
problematic issue when one passes to a higher dimension. It looks likely that the 
existence of a dynamical symmetry and a suitably related first integral may only imply 
existence of a Lagrangian if one has more than just one incidence of that kind, in 
other words, if one studies an algebra of symmetries, as was done for instance by 
Takens (1977). 
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Note added in proof. The proofs of lemmas 4 and 5 can be greatly simplified by noting that the matrix So 
in (57) is identical to S ( t ,  q ( 0 ,  q ( t ) )  where q i t i  is the solution of (7) with the indicated initial values (see 
also Sarlet 1 9 8 3 ~ ) .  
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